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A B S T R A C T   

Data-driven methods, such as artificial neural networks (ANNs), support vector regression (SVM), Gaussian 
process regression (GPR), multiple linear regression (MLR), decision trees (DTs), and gradient boosting decision 
trees (GBDTs), are the most popular and advanced methods for energy demand prediction. However, these 
methods have not been cross compared to analyze their performances for long-term energy demand predictions. 
Therefore, this paper aims to identify the best method among these data-driven methods for quantifying the 
impacts of climatic and socioeconomic changes on future long-term monthly electricity demand in Hong Kong. 
First, historical 40-year climatic, socioeconomic, and electricity consumption data are used to train and validate 
these models. Second, different representation concentration pathway (RCP) scenarios and three percentiles of 
24 global circulation model outputs are adopted as future climatic changes, while five shared socioeconomic 
pathways are considered for future socioeconomic uncertainties. The results show that the GBDT method pro-
vides the best accuracy, generalization ability, and time-series stability, while ANN method exhibits the lowest 
accuracy and lower generalization ability. The monthly electricity demands in Hong Kong under the 
RCP8.5–2090 s scenario are predicted to increase by up to 89.40 % and 54.34 % in the residential and com-
mercial sectors, respectively, when compared with 2018 levels.   

1. Introduction 

1.1. Background 

Since the heating and cooling energy demands are significantly 
affected by outdoor temperature increases (Andrić, Koc, & Al-Ghamdi, 
2019), the relationship between energy consumption and climate 
change has aroused worldwide concerns in energy management and 
planning projects (Ahmed, Muttaqi, & Agalgaonkar, 2012; Moazami, 
Nik, Carlucci, & Geving, 2019). Based on a global projection study 
(Santamouris, 2016) of the average cooling energy demand in 2050, it is 
estimated that there will be significant increases by 750 % and 275 % for 
residential and commercial buildings, respectively, due to future climate 

change and socioeconomic development. Especially in China, the 
number of cooling degree days (CDDs) in 2050 could increase by up to 
150 % compared with 2005 under the high emissions scenario (You 
et al., 2014), and the national electricity demand could grow by 
approximately 58.6 % from 2020 to 2050 (Mei, Li, Suo, Ma, & Lv, 2020). 
Since increasing temperatures will alter cooling and heating demand 
patterns, considerable net increases in energy consumption would most 
likely occur in areas with high cooling demands (Li, Yang, & Lam, 2012), 
i.e., tropical and subtropical areas. In subtropical Hong Kong, the 
building stock consumes more than 90 % of the city’s electricity and 
contributes 60 % of greenhouse gas (GHG) emissions. Among the 
different sectors, the commercial and residential sectors accounted for 
66 % and 27 % of electricity consumption, respectively, in 2018 
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(Electrical & Mechanical Services Department, 2021). Moreover, elec-
tricity consumption per capita in the residential and commercial 
building sectors grew significantly from 4.4 GJ in 1989 to 19.8 GJ in 
2018 (Electrical & Mechanical Services Department, 2021). Coinci-
dently, anthropogenic climate change has resulted in a continuous in-
crease in temperature records in Hong Kong, with an average increase 
rate of 0.17 ◦C per decade from 1989 to 2018 (Hong Kong Observatory, 
2019). Apart from weather-induced consumption, total electricity con-
sumption has increased considerably over the long-term due to steady 
economic and population growth with continuous improvements of 
living standards (Morakinyo et al., 2019). Given this reality, as time 
progresses, electricity consumption, especially space cooling demand in 
the future, could inevitably increase due to future exacerbated climate 
change and further socioeconomic development. 

At present, long-term energy prediction (normally longer than one 
year) is a subject of widespread interest among researchers and energy 
policy makers who are concerned with the accuracy and robustness of 
prediction models (Khuntia, Rueda, & van der Meijden, 2016). Accurate 
predictions of energy demand play a vital role in energy planning and 
policy formulation. Inaccurate predictions, i.e., underestimations or 
overestimations, of energy demand lead to potential outages or unnec-
essary excess capacity. For example, Hobbs (1999) reported that a 1 % 
decrease in the mean absolute percentage error (MAPE) in the prediction 

model could save 10,000 MW h of energy and 1.6 $ million in a specific 
fiscal year. In addition to energy planning and management, predicting 
reliable energy use patterns under different future climate and socio-
economic scenarios could provide a useful reference for policy makers 
regarding climate change mitigation strategies and energy saving plans 
over time (Isaac & van Vuuren, 2009. Therefore, accurate and reliable 
long-term energy demand predictions which incorporate future climate 
change and socioeconomic uncertainties could avoid costly mistakes 
and help policy-makers understand climate change and socioeconomic 
impacts. 

1.2. Literature review 

Predicting a city’s future electricity demand in the long term is 
highly uncertain and complex, as it depends on various factors, 
including climate change and socioeconomic development, such as gross 
domestic product (GDP) and population growth, as well as technological 
developments (Ghalehkhondabi, Ardjmand, Weckman, & Young, 2017). 
As far as long-term energy demand predictions with annual/monthly 
variables are concerned, there are several factors, such as climatic, 
technological, demographic and socioeconomic variables that affect 
future energy demand growth (Xia, Wang, & McMenemy, 2010). The 
pre-2015 literature regarding forecasting long-term electricity demand 

Table 1 
Summary of the literature published after 2015 that has forecasted long-term annual or monthly electricity demand.  

Reference Predication model Main independent variables Demand type and temporal 
scale 

Level Location 

(Pérez-García & 
Moral-Carcedo, 2016) 

Regression/econometrics and 
index decomposition analysis. 

GDP, sectoral share of GDP, 
population 

Annual electricity 
demand till 2030 

National Spain 

(Torrini, Souza, Cyrino 
Oliveira, & Moreira 
Pessanha, 2016) 

Fuzzy logic approach GDP, population growth Annual electricity 
consumption until 2030 

National Brazil 

(Günay, 2016) ANN GDP, population, inflation percentage, 
unemployment percentage, average 
summer temperature, average winter 
temperature 

Annual gross electricity 
demand until 2028 

National Turkey 

(Liang et al., 2016) MLR, Ridge Regression, Extreme 
Learning Machine(ELM) hybrid 
forecasting model 

GDP, population, energy policy constraints Annual electricity demand 
until 2020 

National China 

(Trotter et al., 2016) MLR GDP, population, HDDs, CDDs, hours of 
daylight, calendar effects 

Annual electricity demand 
until 2100 

National Brazil 

(Ang et al., 2017) Time-series approach and 
decomposition approach 

Monthly average temperature, time trend, 
seasonal variation (holidays) 

Electricity consumption per 
month 2011− 2015 

City Singapore and 
Hong Kong 

(Kaboli et al., 2017) optimized gene expression 
programming, ANN, SVM, 
adaptive neuro-fuzzy inference 
system 

GDP, population, import, export Annual electricity 
consumption until 2030 

National ASEAN-5 
countries 

(Li, 2018) MLR Monthly CDD, relative humidity, wind 
speed, rainy days 

Monthly electricity 
consumption 2005− 2016 

National Singapore 

(Hamedmoghadam et al., 
2018) 

Deep Neural Networks and ANN GDP, population, precipitation, average 
temperature, average minimum 
temperature, and average maximum 
temperature 

1 to 24 months ahead 
monthly electricity demand 

National Australia 

(da Silva, Cyrino Oliveira, & 
Souza, 2019) 

Bottom-up approach with linear 
hierarchical models 

Production by process, specific electricity 
consumption (SEC) by process, value added 
of the sector, electricity price 

Annual electricity 
consumption for pulp and 
paper industry until 2050 

National Brazil 

(Fan et al., 2019) MLR HDDs, CDDs, rainfall and sunshine, Per 
capita GDP, electricity price, urbanization 
rate,technology progress 

Electricity demand growth 
by 2100 

National China 

(Toktarova et al., 2019) MLR Temperature, GDP, population, industrial 
production, day duration. 

Annual electricity demand 
until 2035 

National Sweden, Iran, 
Finland 

(Chabouni, Belarbi, & 
Benhassine, 2020) 

MLR CDDs, HDDs, Fixed and movable seasonality 
variables 

Electricity 
demand without a case 
study 

National Algeria 

(He et al., 2019) Hybrid Simulated Annealing (SA)- 
Chicken Swarm Optimization 
(CSO) algorithm 

GDP, population, energy structure, 
industrial structure and urbanization 

Annual electricity demand 
until 2035 

National China 

(Kaytez et al., 2015) Hybrid model with least-square 
SVM, ANN and regression models 

Gross electricity generation, population, 
installed capacity, import, export and total 
subscribership 

Net electricity 
consumption until 2022 

National Turkey 

(Zheng et al., 2020) MLR GDP, population, electricity price, CDDs 
and Heating Degree Days (HDDs) 

Electricity consumption 
until the 2080s 

City Guangzhou 
(China)  
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is well documented in two review studies (Ghalehkhondabi et al., 2017; 
Lindberg, Seljom, Madsen, Fischer, & Korpås, 2019), and more recent 
studies after 2015 are presented in Table 1. The commonly used de-
mographic and socioeconomic variables in the previous literature 
included GDP, population, and electricity price, while the climatic 
variables that normally include CDDs and technological development 
were rarely considered. However, separate consideration of socioeco-
nomic variables and climate change variables has usually been limited in 
most previous studies (see Table 1). Only a few recent studies (Fan, Hu, 
& Zhang, 2019; Günay, 2016; Trotter et al., 2016; Zheng, Huang, Zhou, 
& Zhu, 2020) have combined the uncertainties in demographic and 
socioeconomic variables and future climate change variables. For 
instance, (Trotter et al., 2016) presented a probabilistic long-term 
electricity demand forecasting study for Brazil that incorporated cli-
matic, demographic, and economic uncertainties. However, they only 
considered the future climatic outputs from one general circulation 
model (GCM); thus, the possible biases from different GCMs were 
ignored in their study. Günay (Günay, 2016) used several climatic and 
economic variables to forecast the annual electricity demand in Turkey, 
but the future climatic uncertainties from GCMs were not incorporated 
in this study. Fan et al., 2019 proposed a linear regression model for 30 
provinces in China and incorporated climate variables such as heating 
degree days (HDDs), CDDs, rainfall and sunshine and socioeconomic 
variables, such as per capita GDP, electricity price, and urbanization 
rate. A similar approach and dataset were adopted by Zeng et al. (Zheng 
et al., 2020) to explore the influence of climate change on electricity 
consumption in Guangzhou, China. 

Although these previous studies on long-term energy demand pre-
dictions used multiple climatic and socioeconomic variables, they only 
considered one or several GCMs. However, apart from the uncertainty in 
different climate change scenarios, the intermodel divergence among 
different GCMs could be the main source of uncertainty when projecting 
the future climate and should be considered as future climatic un-
certainties (Zhai & Helman, 2019). These previous studies (Fan et al., 
2019; Günay, 2016; Trotter et al., 2016; Zheng et al., 2020) have not 
addressed future climatic projection uncertainties among the different 
GCMs. Moreover, dry-bulb temperatures, CDDs and heating degree 
hours (HDDs) are some commonly used climatic variables, while other 
important climatic variables, such as wet-bulb temperatures, solar ra-
diation and enthalpy, which could be significant for the thermal comfort 
and energy use patterns in subtropical climates, are usually ignored. In 
subtropical cities such as Hong Kong, which has hot and humid summers 
during which the relative humidity can often be higher than 90 %, even 
up to 100 % (Hong Kong Observatory, 2019); the local residents prefer 
to use a “hybrid’’ strategy, i.e., they switch on air-conditioner and close 
windows only when the indoor thermal environment is intolerable for 
them, to cool residential buildings (Liu, Kwok, Lau, Ouyang, & Ng, 
2020). As air-conditioner usage in “hybrid’’ buildings is influenced by 
the occupants’ window-opening behaviors and indoor thermal comfort, 
humidity and solar radiation could be potential factors that influence air 
conditioning usage (Luo, Cao, Damiens, Lin, & Zhu, 2015). To fill this 
gap, in this study, both climatic and socioeconomic variables, including 
dry-bulb temperatures, wet-bulb temperatures, solar radiation, 
enthalpy, GDPs and population size, are considered as potential vari-
ables. Future climatic and socioeconomic data are obtained by down-
scaling the climatic outputs from 24 GCMs from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) database and socioeconomic 
outputs from the shared socioeconomic pathways (SSPs) database. 

Apart from comprehensively considering possible climatic and so-
cioeconomic uncertainties, a well-performing forecasting model is 
important for the accuracy of long-term energy predictions. The state-of- 
art forecasting techniques that are applied to long-term energy pre-
dictions are summarized below. Previously, traditional forecasting 
models, such as linear regression models (Aranda, Ferreira, 
Mainar-Toledo, Scarpellini, & Llera Sastresa, 2012; Fang & Lahdelma, 
2016; Li, 2018; Trotter et al., 2016; Zheng et al., 2020), econometrics 

(Pérez-García & Moral-Carcedo, 2016; Vu, Muttaqi, & Agalgaonkar, 
2015), and time series (Ang, Wang, & Ma, 2017; García-Ascanio & Maté, 
2010), have been widely used for long-term energy prediction due to 
their simplicity of application and explanation of results. However, 
traditional linear regression models have limitations in rejecting insig-
nificant explanatory variables and addressing the problem of multi-
collinearity (Zheng et al., 2020). In contrast, machine learning methods 
can handle nonlinearity among variables and do not require adoption of 
a particular functional relationship between inputs and outputs (Kon-
tokosta & Tull, 2017). In light of this, some researchers have shed light 
on the applicability of machine learning methods for energy demand 
predictions (Ghalehkhondabi et al., 2017; Ghods & Kalantar, 2011). 
Especially, machine learning methods are widely used and compared for 
short-term or middle-term energy predictions; these include artificial 
neural networks (ANNs) (Luo, Oyedele, Ajayi, & Akinade, 2020; 
Seyedzadeh et al., 2019), support vector machines (SVMs) (Kavaklioglu, 
2011; Shao, Wang, Bu, Chen, & Wang, 2020; Zhong, Wang, Jia, Mu, & 
Lv, 2019), decision trees (DTs) (Chen et al., 2019) or gradient boosting 
decision trees (GBDTs) (Robinson et al., 2017; Touzani, Granderson, & 
Fernandes, 2018), genetic algorithms (GAs) (Assareh, Behrang, Assari, & 
Ghanbarzadeh, 2010; Yu, Wei, & Wang, 2012), Gaussian process 
regression (GPR) (Sangrody, Zhou, & Tutun, 2018; Yang, Li, Li, & Qu, 
2018) and some hybrid models (He, Wang, Guang, & Zhao, 2020; Liang, 
Niu, Cao, & Hong, 2016). Due to the difficulties in quantifying fore-
casting uncertainties and data availability, a limited number of studies 
have used machine learning methods for long-term energy predictions. 
Among the different machine learning methods, the ANN has been the 
most popular machine learning method for long-term energy pre-
dictions. For instance, Günay (Günay, 2016) adopted the ANN model to 
predict electricity demand in Turkey until 2028 and found that the ANN 
model exhibited higher accuracy than the traditional linear regression 
model. In a similar study, Kankal et al. (Kankal, Akpinar, Kömürcü, & 
Özşahin, 2011) found that the ANN model could estimate the energy 
consumption for Turkey better than regression models by using socio-
economic and demographic variables. Kandananond (Kandananond, 
2011) predicted electricity demand in Thailand and found that the ANN 
method shows better mean absolute percentage errors than the multiple 
linear regression (MLR) and autoregressive integrated moving average 
methods. In contrast, a few studies have compared the performance of 
ANNs with other machine learning methods for long-term energy de-
mand predictions. For instance, Kaytez et al. (Kaytez, Taplamacioglu, 
Cam, & Hardalac, 2015) reported that SVM achieved better results than 
the ANN and MLR models for Turkey’s annual electricity consumption 
predictions. Hamedmoghadam et al. (Hamedmoghadam, Joorabloo, & 
Jalili, 2018) used ANNs and deep neural networks to predict Australia’s 
long-term electricity demand and stated that deep neural networks 
exhibited better performance than ANNs. Based on import, export and 
socioeconomic datasets, Kaboli et al. (Kaboli, Fallahpour, Selvaraj, & 
Rahim, 2017) found that optimized gene expression programming pro-
vided higher accuracy for annual electrical energy predictions than 
other artificial intelligence methods, such as ANN, SVM and other linear 
and quadratic models. Furthermore, Jang et al. (Jang, Byon, Jahani, & 
Cetin, 2020) demonstrated that a new probabilistic modeling approach 
that used the nonhomogeneous generalized extreme value distribution 
provided better fits for predicting the density of long-term daily peak 
demand than a trend-based approach using linear and quadratic func-
tions. On the other hand, some problems, such as overfitting and local 
optima, were found in machine learning models (Foucquier, Robert, 
Suard, Stéphan, & Jay, 2013). For example, Deng, Fannon, & Eckelman, 
2018 applied six regressions and machine learning techniques to 
compare their prediction performances. The researchers found that 
linear regression models exhibit better performance than machine 
learning methods for forecasting peak loads of energy use. 

A single algorithm cannot outperform all others; different methods 
have their own appropriate application contexts and could be the best 
possible approach in energy prediction modeling as a function of 

S. Liu et al.                                                                                                                                                                                                                                       



Sustainable Cities and Society 70 (2021) 102936

4

multiple input variables. In addition, the selection of input variables 
determines the performance of algorithms for a given dataset (Ghods & 
Kalantar, 2011). However, in the long-term energy prediction field, the 

existing literature has usually focused on comparisons between an in-
dividual machine learning method and traditional regression models or 
ANNs with limited input variables. Performance comparisons among 

Fig. 2. Boxplots of historical monthly electricity consumption in the Hong Kong residential sector (a) and commercial sector (b).  

Fig. 1. Flowchart of the proposed methodology for the long-term electricity prediction framework.  
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various data-driven methods for long-term energy prediction are still 
nonexistent. Thus, there is an opportunity to study the performance 
comparison of various data-driven algorithms, not only the commonly 
used ANN and MLR but also the state-of-the-art SVM, GPR, DT, and 
GBDT methods, for long-term energy predictions based on feasible cli-
matic and socioeconomic datasets. 

1.3. Research gaps and contributions 

In summary, previous works have usually used a limited number of 
climatic and socioeconomic variables to train the models and have not 
considered the full range of future climatic uncertainties from different 
GCMs. In addition, the existing literature does not systematically 
compare the performance of various state-of-the-art machine learning 
methods, such as SVM, GPR, DT, and GBDT, for long-term energy pre-
diction based on feasible climatic and socioeconomic datasets. Taking 
the subtropical city of Hong Kong as a case study, this study aims to 
compare the superiority or limitations of different data-driven algo-
rithms, which include ANN, SVM, GPR, MLR, DT, and GBDT, for long- 
term energy predictions and to identify the best method among these 
data-driven methods to quantify the impacts of climatic and socioeco-
nomic changes on future long-term monthly electricity demands at the 
city scale. In this study, the different data-driven models use both cli-
matic and socioeconomic variables, including dry-bulb temperatures, 
wet-bulb temperatures, solar radiation, enthalpy, GDP and population 
size, as potential variables, and the intermodel biases among the 
different GCMs will be considered. 

Therefore, the main contributions of this study are twofold. First, in 
the field of long-term energy prediction, performance comparisons of 
the popular data-driven algorithms using climatic and socioeconomic 
variables and selecting the best-performing and applicable model are 
presumably of great worldwide interest under global climate and so-
cioeconomic changes. Second, a reliable and well-performing model 
that can be used to assess the long-term impacts of future climate change 
and socioeconomic development on electricity demand is urgently 
needed and would be valuable for Hong Kong energy policymakers 
when they address energy planning and management and climate 
change mitigation strategies. 

2. Material and methods 

The framework of the methodology carried out in this paper is pre-
sented in Fig. 1. To investigate the impacts of climatic and socioeco-
nomic changes on long-term electricity demand, historical 40-year 
climatic, socioeconomic, and electricity consumption data in Hong Kong 
are first collected and were used to train and validate the ANN, SVM, 
GPR, MLR, DT, and GBDT models. Then, future climatic and socioeco-
nomic uncertainties are used as inputs for the best-performing model to 
predict future electricity demand. The detailed data collection, theory 
and algorithm of data-driven methods, model validation and error 
calculation are discussed in this section. 

2.1. Data preparation 

2.1.1. Historical and future meteorological data 
Data on climatic variables and monthly electricity consumption are 

collected to analyze the relationship between the changing climate and 
electricity consumption over the past 40 years. The monthly electricity 
consumption data of the residential and commercial sectors from 1979 
to 2018 were obtained from the Census and Statistics Department of 
Hong Kong (2019a). The monthly electricity consumption of the resi-
dential and commercial sectors from 1979 to 2018 are plotted in Fig. 2. 
The data were provided by the two electricity suppliers in Hong Kong: 
China Light and Power (CLP Power) Hong Kong Limited and the Hong 
Kong Electric (HKE) Company, Limited. Historical hourly meteorolog-
ical data from 1979 to 2018 were acquired from the Hong Kong 

Observatory (HKO) headquarters station. The HKO headquarters 
weather station is a representative ground-level urban station located in 
Tsim Sha Tsui, which is a densely developed station in the urban center 
of Hong Kong (Cheung & Hart, 2014). More importantly, key meteo-
rological variables, including dry-bulb air temperatures (Td), wet-bulb 
temperatures (Tw), and relative humidity (RH), have been recorded at 
this meteorological station since 1970. Global solar radiation (SR) data 
were acquired from the King’s Park (KP) station, which is also located in 
the TST area and is 1.2 km from the HKO headquarters station (Lau, Ng, 
Chan, & Ho, 2017). 

As Hong Kong is located in a coastal region and experiences many 
hot and humid summers where the air enthalpy is closely related to the 
cooling load, the conventional cooling degree days metric that is based 
on dry-bulb temperature (CDDDBT) may not be a suitable indicator for 
determining energy demands for space cooling (Guan, 2009). In this 
study, cooling degree days that are based on wet-bulb temperatures 
(CDDWBT) are also included for comparison with CDDDBT. To transform 
the hourly weather data into monthly data, monthly climatic variables, 
including the monthly CDDDBT and wet-bulb temperatures (CDDWBT), 
monthly cooling hours, mean dry-bulb temperatures, mean wet-bulb 
temperatures, mean global solar radiation, and mean enthalpy, are 
calculated in this study. The monthly CDDDBT and CDDWBT are calcu-
lated as: 

CDDDBT =
∑n

i=1
(Ti − Tbd)(for Tbd>Ti ,(Ti − Tbd)=0) (1)  

CDDWBT =
∑n

i=1
(Ti − Tbw)(for Tbw>Ti ,(Ti − Tbw)=0) (2)  

where Ti is the actual dry-bulb or wet-bulb temperature at the ith hour. 
Tbd is the base dry-bulb temperature, which is defined as 26 ◦C and is 
based on data from the Ministry of Housing and Urban-Rural Develop-
ment in China (2005) (Lee, Kok, Chan, Kong, & June, 2010). Tbw is the 
base wet-bulb temperature, defined as 24 ◦C, and this temperature is the 
temperature at which the monthly CDDWBT can provide the highest 
correlation coefficients with historical residential electricity 
consumption. 

To represent different future pathways of GHG emissions and at-
mospheric concentrations, four trajectories of total radiative forcing are 
developed and represented by four representative concentration path-
ways (RCPs), namely, RCP2.6, RCP4.5, RCP6.0, and RCP8.5, which are 
contained in the Fifth Assessment Report (AR5) of the Intergovern-
mental Panel for Climate Change (IPCC). Different RCPs characterize 
different trajectories of total radiative forcing in 2100 compared with 
those of 1750 (Knutti & Jan, 2013). RCPs 4.5 and 8.5 represent inter-
mediate stabilization and high greenhouse gas emissions, respectively, 
and are, believed to reflect the contrast between currently feasible and 
business-as-usual climate change mitigation goals (Mora et al., 2013). In 
contrast, RCP2.6 represents very low greenhouse gas emissions and is in 
agreement with ambitious climate change mitigation goals, and RCP6.0 
portrays a high stabilization characteristic (Mora et al., 2013). However, 
only the RCP4.5 and RCP8.5 scenarios belong to the core experiments of 
the CMIP5 database and are provided by all GCM modeling groups 
(Taylor, Stouffer, & Meehl, 2012). The changing climate in Hong Kong is 
already on a track of medium and high emissions according to the last 
5-year weather records from HKO (Morakinyo et al., 2019). Further-
more, the CO2 emission trajectory under RCP8.5 exhibits the closest 
match to the current path of global CO2 emissions (Peters et al., 2013), 
and the RCP4.5 scenario is regarded by researchers as the most likely 
scenario (Zhu, Pan, Huang, & Xu, 2016). Therefore, only RCP4.5 and 
RCP8.5 are chosen to represent future possible climate change scenarios. 
To obtain future local meteorological data, a statistical downscaling 
approach called the ‘morphing’ method is adopted in this study. The 
detailed process of this method is well documented in the literature by S. 
E. Belcher (Belcher, Hacker, & Powell, 2005) and in a previous Hong 
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Kong case study (Liu, Kwok, Lau, Tong et al., 2020). Future weather 
datasets under different future RCP scenarios were extracted from 24 
GCMs (http://pcmdi9.llnl.gov). These twenty-four models were selected 
because they provide finer spatial resolution, require climate variables, 
and both the RCP8.5 and RCP4.5 scenarios for projections. The histor-
ical outputs from 24 GCMs were already validated by HKO using 
cross-validation approaches (see Refs (Chan & Tong, 2014; Tong, Wong, 
& Lee, 2017)). All 24 GCMs are listed in Table A1 of the Appendix. 
Considering intermodel uncertainties, a prudent approach that uses the 
5th percentile, 95th percentile and ensemble mean values from the 
outputs of multiple GCMs is adopted in this study (Troup, Eckelman, & 
Fannon, 2019). The projected 5th percentile, 95th percentile and 
ensemble mean values of decadal temperature anomalies from the 
different GCMs under different scenarios are shown in Fig. 3. The values 
of the projected 5th percentile, 95th percentile and ensemble mean of 
the temperature anomalies in each decade are also provided in Table A2 
of the Appendix. Three time slices of the projected future weather data, 
2026–2045 as the 2035s, 2056–2075 as the 2065s, and 2080–2099 as 
the 2090s, are classified to represent the near-term, middle-term, and 
long-term periods in this century. The future monthly climatic variables 
are also calculated based on Eqs. (1) and (2). 

2.1.2. Socioeconomic variables 
Long-term electricity consumption in a city can also be affected by 

multiple determinants, including technological, demographic and so-
cioeconomic variables. Several variables, such as population size, elec-
tricity prices, penetration rates of air conditioner use, GDPs (gross 
domestic product) and urbanization rates, have been commonly used in 
previous studies (e.g., Refs. (Santamouris (2016); Trotter, Bolkesjø, 
Féres, & Hollanda, 2016). Although electricity price is one of the main 
factors which affects consumers in other nations or cities (Bianco, 
Manca, Nardini, & Minea, 2010; Fan et al., 2019), energy prices in Hong 
Kong are governed by the scheme of control (SOC) between the gov-
ernment and the two electricity suppliers. The historical data in Hong 
Kong show that electricity prices have had positive correlations, instead 
of generally inverse correlations, with electricity consumption levels 
since 1978 (Luk, 2005), which means that consumer demand has always 
exhibited an upward trend even if electricity prices have increased. 
Considering the availability and uncertainties of future electricity prices, 
energy prices are therefore not considered in the model. Additionally, as 
air conditioners have become a common domestic appliance in Hong 
Kong buildings, the penetration of air conditioners in Hong Kong has 
already reached more than 90 % in residential buildings and nearly 100 
% in commercial buildings according to a survey conducted in 1998 
(Wan & Yik, 2004), and technological innovation and new applications 
for replacing existing appliances have an ambiguous impact on elec-
tricity demand (Zheng et al., 2020); the further increase in penetration 
of air conditioners and technological changes are therefore ignored in 
our model. 

However, long-term electricity demand is significantly affected, as 
has been widely recognized in the literature, by demographic and so-
cioeconomic factors. Population size and GDP are the most commonly 
used variables, as shown in Table 1. Moreover, future credible forecasts 
of these two variables are accessible for most nations in the world (Riahi 
et al., 2017). Therefore, set against the above considerations of dataset 
availability and local context, we chose to include population size and 
GDP in the model; we expect that these variables are more influential 
than some other variables on long-term electricity consumption. If the 
results of the model are well performed, there is little need to include 
additional variables. Historical GDP and population size data were ob-
tained from the Census and Statistics Department of Hong Kong (2019b). 
Since the GDP data were recorded once per quarter, we perform a linear 
interpolation to obtain monthly GDP estimates. The quantitative pro-
jections of future GDP and population size are documented in the shared 
socioeconomic pathways (SSPs) database (https://tntcat.iiasa.ac.at 
/SspDb), and the narratives of socioeconomic development for the 
different SSPs are presented in Table A3 of the Appendix. The historical 
and projected data of GDP and population for Hong Kong in the 21 st 
century are presented in Fig. 4. The SSP framework is built around a 
matrix that combines RCPs and future socioeconomic SSP development 
pathways (O’Neill et al., 2014). To have time slices that are in concor-
dance with the climate data of different RCPs, the socioeconomic data in 
the SSPs in the 21 st century are also divided into three periods: the 
2035s, the 2065s, and the 2090s. 

Fig. 4. Historical and projected data for GDP and population for Hong Kong under different shared social-economic pathway (SSP) scenarios.  

Fig. 3. Projected decadal temperature anomalies relative to 1979-2003 for 
Hong Kong under the RCP4.5 and RCP8.5 scenarios. Gray line represents output 
from a single GCM model; the red and blue solid curves represent the ensemble 
mean of the output under RCP4.5 and RCP8.5 scenarios; the 5th percentile and 
95th percentile values are illustrated in dash lines. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article). 
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2.2. Data-driven methods 

2.2.1. Support vector machine 
SVMs are a popular supervised machine learning method for both 

classification and regression and are widely used in occupant behavior 
prediction, fault detection and diagnosis, image recognition and energy 
use prediction (Han, Kamber, & Pei, 2012). Following (Han et al., 2012) 
and applications as described in (Seyedzadeh, Pour Rahimian, Rastogi, 
& Glesk, 2019; Zhong et al., 2019), SVM can use a classifier to calculate 
the best hyperplane to separate the data points in an n-dimensional or 
infinite-dimensional space and divide them into two categories. SVM, 
when used as a regression method, which is called support vector 
regression (SVR), can also be transformed into SVR to predict energy use 
patterns. First, SVR uses a kernel function to sample data to a 
high-dimensional feature space. Then, the projection is performed 
through the linear regression equations as shown below: 

f (x) =
∑N

i=1
(αi− α∗

i )G(xi, x) + β, β ∈ R (3)  

s.t.

⎧
⎪⎨

⎪⎩

∑N

i=1
(αi − α∗

i ) = 0

0 ≤ αi, α∗
i ≤ C

(4)  

where αi and α∗
i are the Lagrange multipliers and C represents the 

penalty parameter. G(xi, x) is the kernel equation to project the original 
low-dimensional data to high-dimensional data. 

Three popular kernel functions that are used in SVM applications are 
shown as follows: 

Linear Kernel: 

G(xi, x) = x’
i x (5) 

Radical Basis Function (RBF) Kernel: 

G(xi, x) = exp(− ‖xi − x‖2
) (6) 

Polynomial Kernel: 

G(xi, x) = (1 + x’
i x)

p (7)  

where p is a subset of the set {2,3…}. 
By evaluating and comparing different kernels during the prediction 

training process, the most computationally efficient kernel can be 
identified as the linear kernel. The RBF kernel with the best accuracy is 
appropriate for dealing with nonlinear data. 

2.2.2. Decision tree 
DT is a supervised classification and regression method that utilizes a 

tree-structured flowchart to classify data points into their respective 
classes. Each internal node in the tree model, which is a nonleaf node, 
represents a test on an attribute (Yu, Haghighat, Fung, & Yoshino, 
2010). Moreover, each leaf node determines whether a room air 
conditioner is on or off. To build a regression tree, there are two essential 
steps (James, Witten, Hastie, & Tibishirani, 2013): 

“1. We divide the predictor space, which is the set of possible values for 
X1,X2,…XP —into J distinct and non-overlapping regions, R1,R2,…RJ. 

2. For every value that falls into the region Rj, same prediction will be 
made, which equals to the mean of the training observations’ response values 
in Rj. 

The goal is to find boxes R1,R2,…RJ that minimize the RSS, given by 

∑J

j=1

∑

i∈Rj

(yi − ŷRj
)

2 (8)  

where ŷRj 
is the mean response for the training observations within the J th 

box.” 

2.2.3. Artificial neural network 
ANNs are widely used machine learning algorithms that were 

inspired by biological neural networks (Kandananond, 2011; Ma & 
Cheng, 2016). The basic neural network model is usually based on a 
series of synaptic organizations of neurons, and the neural network can 
transform multiple inputs within the hidden layers. First, M linear 
combinations of the independent variables x1…, xn are used, as shown in 
the following equation: 

aj =
∑n

i=1
w(1)

ji xi + w(1)
j0 (9)  

where the superscript (1) represents the parameters that belong to the 
first ‘layer’ and j = 1…, M. The parameter ω(1)

ji is the weight and ω(1)
j0 is 

the bias. Moreover, aj are known as activation functions. Then, a 
differentiable, nonlinear activation function h(⋅) is provided to transfer 
each quantity as follows: 

zj = h(aj) (10) 

The quantities that are in accordance with the outputs of the basis 
functions are called hidden units. A sigmoidal function such as the lo-
gistic sigmoid or ‘tanh’ function usually serves as a nonlinear activation 
function h(⋅). Again, these quantities are combined in linear form to 
generate output unit activation: 

ak =
∑M

j=1
w(2)

kj zj + w(2)
k0 (11)  

where k = 1, ...,K and K represent the total number of outputs. This 
transfer function reveals the second layer of the neural network and ω(2)

k0 
is associated with the biases. 

In summary, by using a suitable sigmoidal activation function, 
output unit activations can be transformed to calculate a set of outputs, 
yk. For a standard regression problem, the activation function is the 
identity function to ensure that yk = ak. Finally, the above-described 
various stages can be integrated into one overall network function 
that can be represented as follows: 

yk(x,w) = σ
(
∑M

j=1
w(2)

kj h

(
∑D

i=1
w(1)

ji xi + w(1)
j0

)

+ w(2)
k0

)

(12)  

where vector ω is the combination of all sets of weights and biases. 
Therefore, the framework of the network model can be interpreted as a 
nonlinear function that is based on input set {xi} with a corresponding 
output set 

{
yk
}
, and this function is also adjusted by the vector ω. 

2.2.4. Gradient boosting decision tree 
GBDT models are ensemble methods that are based on DT (Touzani, 

Granderson, & Fernandes, 2018). Assuming we have K decision trees, 

ŷi =
∑K

k=1
fk(xi), fk ∈ F (13)  

where F is the space of functions to accommodate entire sets of regres-
sion trees and fk(xi) represents a single tree. 

The objective of GBDT is 

Obj =
∑n

i=1
l(yi, ŷi) +

∑K

k=1
Ω(fk) (14)  

where 
∑n

i=1l(yi, ŷi) is the training loss, and 
∑K

k=1Ω(fk) is the complexity 
of trees. 

Typical GBDT model training includes an iterative process to reach 
the maximum iteration number or minimum loss requirements. 

2.2.5. Gaussian process regression 
By using a Gaussian distribution, GPR models are powerful 
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nonparametric kernel-based probabilistic models for regression prob-
lems. Compared with other kernel-based methods such as SVM, some 
superior behaviors can be observed for GPR, e.g., learning the kernel and 
regularization parameters, overall feature selection, and making fully 
probabilistic predictions. The sample data in a typical GPR for predic-
tion follow a marginal likelihood as follows: 

p(y
⃒
⃒X) ∼ N(0,KN + σ2

nI) (15)  

where n × n matrix KN is the covariance matrix and σ2
n is the noise term’s 

variance. Moreover, I is the identity matrix. 
The predictive distribution is 

p(y∗
⃒
⃒X∗,X, y) ∼ N(μ∗, σ2

∗) (16)  

μ∗ = K∗N(KN + σ2
nI)− 1y (17)  

σ2
∗ = K∗∗ − K∗N(KN + σ2

nI)− 1KN∗ (18)  

which contains some key variables in GPR, e.g., μ∗ is the mean value of 
the Gaussian posterior distribution, σ2

∗ is the covariance matrix in the 
regression problem, K∗N is the covariance matrix among the indepen-
dent variables in the training and test sets, and σ2

n is the variance of the 
assumed noise level. Moreover, X and X∗ represent the training inputs 
and new test inputs, respectively. 

2.2.6. Multiple linear regression 
MLR is a method to improve linear models to fit nonlinear functions 

to data, which utilizes the rapid computational performance of linear 
regression and enhances linear models to fit complex data curves. By 
constructing polynomial features from original inputs and coefficients, a 
multiple linear regression can be created based on polynomials with 
different orders or forms. For example, a traditional linear model with 
one-dimensional input data is shown as follows: 

Y = a0X + b (19) 

When a complex function is fitted to the data instead of a hyperplane, 
we can combine the features of different-order polynomials: 

Y = a0X + a1X2 + a2X3 + ⋯ + adXd (20)  

where a0, a1, a2, ad are the coefficients, which can be readily determined 
using least squares linear regressions, since they can be estimated as 
standard linear regression models with predictors X, X2,X3,Xd. With a 
very large degree d, a polynomial regression can fit a very nonlinear 
curve, and in real-world practice, d is usually less than or equal to 4 
(James et al., 2013). A degree that is too high can cause the curve to be 
overflexible and exhibit very strange shapes. In our research, the degree 
is strictly restricted to ≤ 4. 

2.3. Model validation and error calculation 

To compare the performances among different algorithms, different 
widely used statistical criteria are adopted, including R-square, average 
deviation, coefficient of variance root mean squared error (CV-RMSE), 
mean absolute percentage error (MAPE) and normalized mean bias error 
(NMBE). For energy modeling practice, the standard of the American 
Society of Heating Refrigerating and Air-Conditioning Engineer (ASH-
RAE) Guideline 14 (ASHRAE Guideline 14-2014, 2014) recommends the 
use of two criteria, RMSE and NMBE, to evaluate the goodness-of-fit of a 
simulation model. Therefore, RMSE and NMBE were adopted to quantify 
the deviations among predicted values and actual values (Gayawan & 
Ipinyomi, 2009). Instead of using classic RMSE, CV-RMSE was used as 
the statistical criterion to avoid ambiguity and achieve a more accurate 
evaluation. Results with lower CV-RMSE and NMBE values are normally 
preferred: 

NMBE(%) =

∑n
i=1(yi − y’i)

n
×

1
y

(21)  

CV(RMSE)(%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − y’i)
2

n

√

×
1
y

(22)  

where yi is the actual value, y’
i is the projected value at time interval i, 

and y is the mean value of the total number of n real data points. 
Another widely used statistical criterion, the average deviation, can 

quantify the averaged percentage deviation between the predicted and 
actual values of the entire dataset: 

Average Deviation =

∑n

i=1
|y’i − y’|

n
× 100% (23) 

The mean absolute percentage error (MAPE) is another measurement 
of model perfection. This research used MAPE for comparisons of model 
accuracy, and smaller MAPE values indicate better performing models: 

MAPE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
yi − y′

i

yi

⃒
⃒
⃒
⃒ (24) 

To avoid the negative effects of large sample sizes and extra 
explanatory variables, another coefficient of determination, adjusted R- 
square, was used to optimize R-square and to determine how well a 
model predicts new observations (Carpenter, Woodbury, & O’Neill, 
2018). Predictions with higher adjusted R-square values are usually 
favored. The adjusted R-square measure is defined as follows: 

Adjusted R − square = R2 − (1-R2)
p

n − p − 1
= 1 − (1-R2)

n − 1
n − p − 1

(25)  

where n represents sample size, p is the total number of exploratory 
variables in the model, and R2 is the abbreviation for R-square. 

In this study, instead of using individual criteria, CV-RMSE and 
NMBE were used as the primary criteria, while the others were used as 
supplementary criteria. In addition, the annual deviations in time series 
and histograms of prediction deviations in the training and testing sets 
were plotted to determine the overall performances of different data- 
driven methods in terms of time series stability and generalization 
ability. 

3. Results 

3.1. Correlation results of independent variables and electricity 
consumption 

Fig. 5 shows time series plots of key meteorological variables and 
electricity consumption from 2003 to 2018. Both residential and com-
mercial electricity consumption exhibit clear seasonality, i.e., electricity 

Fig. 5. Visualization of some principal meteorological variables and electricity 
consumption from 2003 to 2018. 
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consumption in the summer months is significantly higher than that in 
the winter months. Peak electricity demand often occurs in July or 
August, while the minimum electricity demand often occurs during the 
winter months, such as December, January or February. In addition, 
electricity consumption generally tends to exhibit a similar trend to 
CDDs, which means that future electricity consumption will inevitably 
be high due to the increasing CDDs. 

In this study, Pearson correlation coefficients were used to identify 
the relationships among different parameters. Table 2 shows the matrix 
of the Pearson correlation coefficients among electricity consumption in 
the residential and commercial building sectors and the influencing 
variables. Electricity consumption in the residential and commercial 
sectors is strongly influenced by meteorological parameters and socio-
economic variables, such as GDP, population, and CDDDBT, with corre-
lation coefficients of 0.822, 0.811, and 0.475 and 0.944, 0.943, and 
0.279 for the residential and commercial sectors, respectively. Over the 
40-year period, socioeconomic variables tended to have more influence 
on electricity consumption than meteorological variables, which in-
dicates that future long-term socioeconomic development could provide 
the dominant influence on future electricity demand. The results also 
suggest that socioeconomic development is more closely related to the 

increased electricity consumption in the commercial sector, i.e., the 
correlation coefficients among the socioeconomic variables and elec-
tricity consumption in the commercial sector are larger than those in the 
residential sector. On the other hand, electricity consumption in the 
residential sector is more sensitive to climatic variables, e.g., CDDs and 
radiation. In addition, the results suggest that several independent 
variables, such as CDDs, enthalpy, mean dry-bulb and wet-bulb tem-
peratures and cooling hours, have significant intercorrelations and 
collinearity among them. However, CDDDBT has a higher correlation 
coefficient than CDDWBT, cooling hours, enthalpy, and mean dry-bulb 
and wet-bulb temperature for the commercial sector, while CDDWBT is 
more strongly related to the residential sector than the other meteoro-
logical variables. This finding means that CDDs based on dry-bulb or 
wet-bulb temperatures are still more influential than the other meteo-
rological variables for electricity consumption in Hong Kong. Therefore, 
only those variables with higher correlation coefficients, e.g., CDDDBT, 
CDDWBT and solar radiation, are included as independent meteorolog-
ical variables for model training. 

Table 2 
Correlation matrix of electricity consumption against key independent variables from 1979 to 2018.   

Commercial Residential Enthalpy CDD_DBT CDD_WBT Mean_DBT Mean_WBT Cooling 
Hours 

Radiation Population GDP 

Commercial Pearson 
correlation 
value 

1           

Residential Pearson 
correlation 
value 

.927** 1          

Enthalpy Pearson 
correlation 
value 

.269** .457** 1         

CDD_DBT Pearson 
correlation 
value 

.279** .475** .990** 1        

CDD_WBT Pearson 
correlation 
value 

.248** .493** .869** .899** 1       

Mean_DBT Pearson 
correlation 
value 

.276** .460** .996** .987** .854** 1      

Mean_WBT Pearson 
correlation 
value 

.266** .447** .991** .978** .864** .985** 1     

Cooling 
Hours 

Pearson 
correlation 
value 

.254** .489** .926** .956** .966** .917** .914** 1    

Radiation Pearson 
correlation 
value 

.318** .499** .768** .789** .718** .776** .720** .766** 1   

Population Pearson 
correlation 
value 

.943** .811** .067 .061 .050 .075 .070 .049 .104* 1  

GDP Pearson 
correlation 
value 

.944** .822** .097* .094* .085* .104* .097* .081* .157** .953** 1  

* Correlation is significant at the 0.05 level (2-tailed). 
** Correlation is significant at the 0.01 level (2-tailed). 

Table 3 
Comparison of statistical criteria and computation times for the residential sector.  

Algorithm Deviation Percentage (%) R2 CV-RMSE NMBE MAPE Computation time 

SVR − 7.6736 0.8878 369.9767 8.5264 8.1303 0.1448 
Decision Tree − 7.1397 0.8468 432.3404 9.8444 6.7301 0.0548 
ANN 13.9773 0.6189 681.8645 17.7908 − 13.0189 1.0027 
GBDT − 7.4762 0.8839 376.4297 9.1091 7.9868 0.0801 
GPR − 0.6037 0.8418 439.4031 10.1600 9.9375 1.9865 
MLR 5.3376 0.8689 399.9245 9.5315 − 6.4693 0.1848  
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3.2. Comparisons of model performance 

Six statistical criteria, which included deviation percentage, R- 
square, CV-RMSE, MAPE and NMBE, are used to evaluate prediction 
accuracies, as shown in Table 3 for the residential sector and Table 4 for 
the commercial sector. Normally, the preferred algorithms for energy 
predictions demonstrate the shortest computation time, NMBE, 

deviation percentage and CV-RMSE and with the highest R-square value. 
The results show that the deviation percentage, adjusted R-square, CV- 
RMSE, NMBE, and MAPE values vary for different methods, but no 
single method performed best among the different criteria. For 
computing times, all algorithms exhibit a quick response and their 
computation times are all less than 4 s, while the GPR and ANN usually 
involve longer times, i.e., more than 1 s, to generate predictions, which 

Fig. 6. Visualizations of training data and test data and their prediction results for (a) the residential sector and (b) commercial sector. Orange lines represent 
simulated values, while the green lines represent actual values. Blue vertical lines reveal the separation boundaries between the training and testing data, where the 
left part of the figure is the training set, and the testing set is shown in the right part. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 

Table 4 
Comparison of statistical criteria and computation times for the commercial sector.  

Algorithm Deviation Percentage (%) R2 CV-RMSE NMBE MAPE Computation time 

SVR 2.2248 0.9070 392.9819 3.7017 − 1.9996 0.0480 
Decision Tree − 5.1804 0.7946 584.0735 5.5243 5.4079 0.0250 
ANN 14.4964 0.2937 1465.6920 14.6236 − 14.2842 3.9562 
GBDT − 3.4467 0.8957 416.0928 4.0818 3.7180 0.1326 
GPR − 1.2049 0.7986 578.3119 4.9640 3.5756 2.4120 
MLR 4.7388 0.7691 619.1794 6.0161 − 4.6745 0.3152  
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means that the algorithm architecture in the GPR and ANN methods is 
more complex than in the others. In the residential sector, the R-square, 
RMSE, and NMBE values of the ANN model are 0.6189, 681.8645 and 
17.7908, respectively. Among all algorithms, the ANN model demon-
strated the lowest prediction accuracy. For the remaining algorithms, 
the DT and GPR models exhibit higher CV-RMSE and NMBE values than 
the other methods, while the SVR, GBDT and MLR methods have similar 
performances with higher precisions. For the commercial sector, 
although there is no significant difference among the different algo-
rithms in terms of CV-RMSE and NMBE, the exception is that the ANN 
model exhibits relatively lower accuracy, i.e., all statistical criteria in the 
ANN method are inferior to the other algorithms. In contrast, the CV- 
RMSE values of the SVR and GBDT algorithms are 392.9819 and 
416.0928, respectively, which are smaller than those of the other models 
and indicate that the SVR and GBDT algorithms have the best ability to 
predict overall load shapes. In summary, the SVR, GBDT and MLR 

algorithms exhibit better prediction performances for the residential 
sector. The SVR and GBDT algorithms exhibit better performance for the 
commercial sector in terms of their accuracies. 

However, based on the abovementioned statistical criteria, deter-
mining the best-performing algorithm is not straightforward. Since 
using single statistical criteria to describe entire datasets and predict 
results is flawed, i.e., the criteria can hardly express the information for 
an entire time-series, time series plots for all prediction methods are 
presented in this study, as shown in Fig. 6. For the residential sector, 
Fig. 6(a) reveals that although the SVR and GPR algorithms exhibit very 
strong overall performance for the training data, they tend to have 
overfitting issues for the testing data. In particular, these algorithms 
exhibit poor performances for predicting the peak electricity consump-
tion of each year in the testing data. This result means that they have 
weaker generalization abilities than the other methods. For the 
remaining methods, the ANN model exhibits weak performance for the 

Fig. 7. Visualizations of the annual predictions of the relative deviations shown as box plots in (a) the residential sector and (b) the commercial sector. Note that the 
axis ranges are different among some methods. 

S. Liu et al.                                                                                                                                                                                                                                       



Sustainable Cities and Society 70 (2021) 102936

12

lowest electricity usage levels in the last years of the testing set, while 
the decision tree, GBDT and MLR algorithms exhibit better performance 
for the testing set than the other methods. However, among the decision 
tree, GBDT and MLR methods, their results appear to present similar 
behavior and small differences in terms of their generalization ability. 
Thus, additional exploration is needed to identify the best algorithm. 

Time-series plots for the commercial sector are shown in Fig. 6(b). 
These show that although most of the algorithms exhibit good perfor-
mance for the training data, the DT, ANN, GPR and MLR methods tend to 
show overfitting for the testing data, which indicates their weaker 
generalization abilities for long-term commercial electricity demand 
predictions compared with other methods. Specifically, the GPR and DT 
models cannot reasonably predict the peak electricity consumption of 
each year in the testing data, while the ANN and MLR models perform 
poorly for determining the lowest energy use levels in the recent few 
years. Only the GBDT algorithm shows a smaller discrepancy with actual 
electricity consumption and appears to be satisfied, which reveal the 
superiority and greater generalization ability of the GBDT algorithm for 
the commercial sector when compared with other methods. Therefore, 

the GBDT algorithm is identified as the best-performing algorithm for 
commercial energy use predictions in terms of generalization ability. 

Fig. 7 shows the annual relative deviations between the predicted 
results for the different algorithms and the actual values from 1979 to 
2018. For the residential sector, smaller annual relative deviations are 
evident for the DT and GBDT models, which mean that using tree-based 
models in energy use predictions provides greater accuracy with time. 
Furthermore, Fig. 8 shows comparisons of the actual and predicted 
values by using histograms, in which thinner symmetrical shapes are 
favored. Similar characteristics for the GBDT performance can be found 
in both the residential and commercial sectors, i.e., the performance of 
the results using the GBDT method exhibits better stability and accuracy 
with more symmetrical shapes and fewer significant deviations than the 
other algorithms. However, due to the size of the dataset, the deviation 
histogram does not represent an ideal Gaussian distribution. It should be 
noted that different algorithms tend to reduce the absolute deviations of 
the predictions, but large relative deviations can still be observed in the 
initial years of the dataset due to the lower total electricity use. 

Additionally, comparing the training data with the testing data 

Fig. 8. Histogram visualizations of the predicted relative deviations of (a) the residential sector and (b) commercial sector. Orange colors indicate the deviations for 
the training set, while the blue colors indicate the deviations for the testing set. Note that the axis ranges are different among some methods. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article). 
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(Fig. 8) indicates that there are no significantly different deviation 
ranges and patterns in the GBDT data for the residential sector and in the 
SVR and GBDT data for the commercial sector, while weaker general-
ization abilities and significant overfitting issues can be observed for the 
other methods. Overall, the performance results of the GBDT method 
show that it not only has a greater generalization ability and higher 
prediction accuracy but also provides better stability in time series than 
the other algorithms. Therefore, we infer that the GBDT method pro-
vides more accurate and reliable predictions than the five other methods 
for the long-term electricity consumption for both the residential and 
commercial sectors. 

3.3. Predictions of future electricity demand under different climate 
change and socioeconomic scenarios 

Fig. 9 shows the percentage changes of future electricity demand in 
the residential and commercial sectors under different climate change 
and socioeconomic scenarios. It can clearly be seen that electricity de-
mand is expected to increase in all scenarios over time and that the 
relative increase in electricity demand in the residential sector is 
considerably larger than that in the commercial sector. The increasing 
trend of electricity demand is expected to be more dramatic before 

2065s and then less pronounced from 2065s to 2090s. Moreover, the 
discrepancy between different percentiles increases with time. For 
instance, the difference between the 5th and 95th percentiles in the 
residential sector under SSP3 and the RCP8.5–2030 s scenario is 9.3 %, 
but the difference between them in SSP3 becomes 14.3 % under the 
RCP8.5–2090 s scenario. These results also confirm that the implications 
of the different percentiles of GCMs on electricity demand could be 
larger than the implications of different RCPs, e.g., the difference be-
tween RCP4.5 and RCP8.5 in SSP1− 2035s is only 0.19 %, while the 
difference between the 5th and 95th percentiles in RCP4.5 and 
SSP1− 2035s is 9.75 %. Which illustrates that the divergence among 
different GCMs must be considered instead of being eliminated. This 
result agrees with the temperature differences among different GCMs, as 
shown in Fig. 3, and IPCC AR5, which states that the variations across 
the different GCMs could be larger than those among different RCPs. 

In contrast, SSPs have significantly varied impacts on electricity 
demand under a given RCP. Among the different SSPs, the lowest elec-
tricity demand is always found for SSP3, while the highest demand is 
found for SSP5 in 2035s and 2065s and for SSP2 in 2090s. These findings 
can be obtained due to the different increase rates of SSPs, as shown in 
Fig. 3. For example, the smallest GDP and population can be found in 
SSP3 from 2035s to 2065s, while the population decrease that takes 

Fig. 9. Percentage changes of future electricity prediction under different climate change and socioeconomic scenarios compared with electricity consumption in 
2018. Different numbers indicate different SSP scenarios. The different-colored lines in red, black and blue indicate the 95 % percentile, ensemble mean and 5% 
percentile, respectively. Orange and blue bars indicate RCP4.5 and RCP8.5, respectively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article). 

Fig. 10. Relative percentage changes between RCP8.5 and RCP4.5 under the different SSPs. The error bars indicate the standard deviations between the different 
percentiles. 
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place for SPP5 is more dramatic than for the other SPPs from the 2065s 
to 2090s and the population in SSP2 is the largest in 2090s. Another 
characteristic is that the divergence of electricity demand among 
different SSPs decreases with time. For example, the difference between 
electricity demand in SSP3 and SSP5 can be up to 26.5 % in 2035s for the 
residential sector, but the maximum differences between SSP3 and SSP5 
become 10.2 % in 2065s and 2090s, respectively. The reason is that the 
GDP and population of SSP3 are the lowest among SSPs before the 2065s 
but steadily increase after that time, while they decrease in the other 
SSPs after the 2065s. 

To compare the magnitudes of the implications among the different 
climatic scenarios and socioeconomic development scenarios, the rela-
tive percentage changes among the different RCP and SSP scenarios are 
presented in Figs. 10 and 11. Fig. 10 shows the percentage changes of 
electricity demand between RCP8.5 and RCP4.5 by using the electricity 
demand in RCP4.5 as the baseline. The results show that variations in 
RCP scenarios can cause greater increases in electricity demand in the 
residential sector (from a 5 %–7 % increase in the 2090s) than in the 
commercial sector (from a 1.5 %–2.5 % increase in the 2090s). This 
effect could be attributable to the higher sensitivity, i.e., higher corre-
lation coefficients, of the residential electricity demand to climate 
change than the commercial sector, as stated in Section 4.1. RCP8.5, 
with higher radiative forcing, means higher CDDs than RCP4.5, and the 
differences in CDDs will become larger with time, as shown in Fig. 3. 
Thus, the variations in RCP scenarios lead to higher electricity demand 
in the 2090s than in the 2035s and 2065s. 

Fig. 11 shows the percentage changes among different SSPs when 
using the smallest SSP3 as the baseline. Overall, the ratios of variations 
among SSPs are higher than those among RCPs. The variations among 
different SSPs could result in a 10 %–25 % change in electricity demand 
in the 2035s and a 5 %–12 % change in the 2090s. However, the results 
reveal that the divergence of electricity demand among different SSPs 
decreases with time. Although the increase in electricity demand that is 
caused by climate change becomes more significant over time, the in-
fluence of the variations in SSPs on the increase in electricity demand 
decreases in the 2090s. This finding could also explain why the overall 
increasing trend of electricity demand is more dramatic before 2065 and 
becomes lower from 2065 to 2090. Notably, the percentage change that 
is attributable to socioeconomic development in the residential sector is 
larger than that in the commercial sector in the 2035s, while the change 
in long-term electricity demand in the commercial sector that is caused 
by socioeconomic development is larger than that in the residential 
sector in the 2090s. The reason could be that electricity demand in the 
commercial sector is more sensitive to long-term socioeconomic vari-
ables than the residential sector. Moreover, larger deviations that are 
attributable to climate change can be found in the residential sector, 
which further confirms the higher sensitivity of residential electricity 
demand to climate change and helps explain the greater increase in 

electricity demand in residential buildings than in commercial 
buildings. 

4. Discussion 

4.1. Performance of data-driven methods 

After cross comparing the performances among the six popular data- 
driven methods, the ANN method provides results with the lowest ac-
curacy, while the GBDT method outperforms the other methods. In fact, 
most previous studies (Kandananond, 2011; Kankal et al., 2011; 
Sangrody et al., 2018) have stated that the ANN is better than the MLR 
and other linear regression methods. Although direct comparisons are 
not possible, as none of these comparisons simultaneously considered 
the GBDT, MLR and ANN methods, the reason behind the different 
performances of the ANN and MLR could be attributed to the differences 
in training datasets and independent variables between this study and 
previous studies. For instance, previous studies (Kandananond, 2011; 
Kankal et al., 2011; Sangrody et al., 2018) only considered climatic 
variables or socioeconomic variables over shorter historical periods 
(typically from 15 to 20 years) as input data, but our model considered 
40-year climatic and socioeconomic variables together. Therefore, the 
long-term synergistic effect of socioeconomic development and climate 
change could perform differently. Although most of the data-driven 
models have demonstrated their ability to use small numbers of inde-
pendent variables to infer energy use with long computation times, 
small error qualification, and efficiency in hyperparameter tuning, the 
GBDT method is finally selected to develop long-term monthly elec-
tricity demand modeling due to its higher accuracy, better generaliza-
tion ability, and time series stability. Notably, the performance of these 
data-driven models is influenced considerably by the long-term char-
acteristics of the particular dataset used in this study. Hong Kong un-
derwent significant economic and population growth during the second 
half of the 20th century and showed signs of slowing down at the 
beginning of this century. This long-term socioeconomic property could 
affect overall model performances because the prediction model is 
significantly affected by socioeconomic variables as well as by the 
duration of the training data. Moreover, city-scale datasets are usually of 
small size with limited known predictors, which could also affect the 
performance of data-driven models. 

4.2. Climatic and socioeconomic impacts and policy implications 

The uncertainties that arise from future climate change and socio-
economic scenarios are all considered in the model. The results show 
that socioeconomic variables are strongly related to historical electricity 
consumption and are the main drivers of the increased electricity de-
mand. This conclusion is affirmed by previous case studies (Fan et al., 

Fig. 11. Relative percentage changes among the different SSPs and SSP3. The error bars indicate the standard deviations among the different percentiles and RCPs.  
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2019; Lam, 1998; Pilli-Sihvola, Aatola, Ollikainen, & Tuomenvirta, 
2010). In addition, the increasing trend of future electricity consump-
tion that is projected by our model, which peaks in the 2065s due to the 
greatest increase in GDP and population at that time, is verified by other 
studies in the same regions (Fan et al., 2019; Zheng et al., 2020). 
However, some studies have used regression models in other regions, e. 
g., Brazil (Trotter et al., 2016) and Iran (Toktarova, Gruber, Hlusiak, 
Bogdanov, & Breyer, 2019) and have predicted that peak electricity 
consumption will occur from 2060 to 2080. In contrast, our model 
predicts that electricity consumption is still expected to increase slightly 
after 2065s. This result could be attributable to the differences in cli-
matic and socioeconomic development contexts and modeling methods. 
Moreover, the residential and commercial sectors exhibit different re-
sponses to climate change. The residential sector of this study is 2–3 
times more sensitive to RCP changes than the commercial sector. Similar 
results can be found in previous studies (Fung, Lam, Hung, Pang, & Lee, 
2006; Lam, Wan, Lam, & Wong, 2010) of Hong Kong. However, the 
percentage changes of electricity demand are different compared with 
previous studies. For instance, Wan, Li, Liu, & Lam, 2011 explored the 
increasing trend of cooling loads caused by climate change in Hong Kong 
by using regression models. They reported that electricity consumption 
would increase by 6.3 % and 7.6 % in 2070–2100 for the low-forcing and 
medium-forcing climate change scenarios, respectively. Two other 
studies (Kolokotsa & Santamouris, 2015; Wan, Li, & Lam, 2011) also 
estimated that the percentage increases in energy use in 2090–2100 are 
expected to increase by up to 8.1 % and 10.7 % compared with the 
average energy use in 1979–2008 using regression analysis, respec-
tively. In contrast, the total electricity demand for buildings may in-
crease by up to 89.40 % in the residential sector and by 54.34 % in the 
commercial sector compared with the 2018 levels presented in this 
study. The reason for this difference is mainly due to the lack of 
consideration of socioeconomic development variables in the previous 
models and the different climate change scenarios and GCMs adopted, i. 
e., a special report on emissions scenarios (SRES) and Coupled Model 
Intercomparison Project Phase 3 (CMIP3), in the previous studies. 

The results also show that although there are no significant differ-
ences in future total energy demand under different RCPs in the near- 
term 2035s, while a large increasing trend for the residential sector is 
still observed. These findings also suggest that climate change mitiga-
tion policy interventions, such as adopting clean and renewable energy 
technologies and green building designs, should be implemented. 
Otherwise, a significant electricity demand increase will be inevitable 
and will further intensify GHG emissions and global climate change. The 
inevitably increasing electricity demand requires significant additional 
investments to enhance power capacity, which may also lead to 
increased costs of energy management and electricity prices and exac-
erbate the vulnerability of the low-income population (Kolokotsa & 
Santamouris, 2015). Therefore, climate change policy interventions, 
such as mitigation of climate change and energy efficiency retrofitting 
measures for existing buildings, should be implemented urgently to 
achieve 2025 energy saving and 2030 carbon emission reduction tar-
gets, as stated in Hong Kong Energy Saving Planning 2025+ (Develop-
ment Bureau & Transport & Housing Bureau, 2015) and Hong Kong 
Climate Action Plan 2030+ (Environment Bureau, 2017). Policies that 
aim to place stringent limits on resource usage and enhance the sinks of 
temperature anomalies, such as the use of renewable energy technolo-
gies, high energy efficiency supply and management systems, and smart 
and resilient technologies for cities, in association with mitigation 
technologies for urban infrastructure and buildings, could significantly 
reduce GHG emissions and future energy demands (Santamouris, 2013). 
The Buildings Department in Hong Kong controls the energy efficiency 
of residential and commercial buildings by setting thresholds for the 
residential thermal transfer value (RTTV) and overall thermal transfer 
value (OTTV), respectively. This study also provides evidence of the 
pressing need to review both the OTTV and RTTV standards and to 
continue enhancing these two standards over time in the context of 

future climate change. In addition to using technological measures, 
energy-conserving behaviors among the general public and households 
should also be encouraged and considered as a key adaptation policy 
option (Yang, Yan, & Lam, 2014). 

4.3. Limitations and future work 

Since this study explicitly focuses on the impacts of long-term future 
climate change and socioeconomic development on monthly electricity 
demands, day-to-day or hourly predictions are limited due to the un-
availability of higher-resolution historical electricity consumption data. 
However, the climatic data, methods and framework of this study would 
also be applicable for more useful daily or hourly electricity demand 
forecasts if daily or hourly historical electricity consumption data were 
available in the future. Additionally, the GBDT algorithm should be 
updated with additional parameters to improve prediction accuracies in 
the future. In addition to these temporal limitations, this study uses only 
the aggregated datasets at the city scale. Hence, the spatial-temporal 
variations in electricity consumption and effective return periods of 
renewable energy plans could be further studied. 

5. Conclusion 

Long-term predictions of electricity demand while considering both 
future climate change and socioeconomic growth are of great interest for 
policymakers to manage energy systems, control carbon emissions and 
develop climate change mitigation strategies at the city level. This study 
focuses on (1) testing and applying six popular data-driven methods, 
including SVM, DT, ANN, GBDT, GPR and MLR, for long-term electricity 
predictions at the city scale; (2) analyzing and cross-comparing their 
simulation performances in terms of accuracy, stability, and general-
ization ability to identify the best model; and (3) adopting the GBDT 
model, which is the most suitable model, in a case study in Hong Kong to 
predict long-term monthly electricity demands under both future cli-
matic and socioeconomic changes. 

The following major contributions and conclusions can be drawn:  

1 The prediction accuracies of six popular data-driven methods are 
compared by examining their computational times and statistical 
criteria, including deviation percentage, R-square, CV-RMSE, MAPE 
and NMBE. SVR, GBDT and MLR to achieve better prediction accu-
racy for the residential sector. The SVR and GBDT methods exhibit 
better performance for the commercial sector in terms of CV-RMSE 
and NMBE. Compared with the other commonly used data-driven 
models, the GBDT algorithm demonstrates its overall superiority 
with respect to its accuracy, generalization ability, and time series 
stability. Based on the findings detailed above, it is easy for other 
researchers to select an appropriate data-driven model based on their 
study purpose and needs.  

2 The uncertainties that arise from both future climate change and 
socioeconomic scenarios are considered in the model. To examine 
the future uncertainties of different RCPs, GCMs and socioeconomic 
development, a matrix that combines the projected 5th percentile, 
95th percentile and ensemble mean values of temperature anomalies 
from 24 GCMs under different RCP scenarios and socioeconomic 
data, i.e., GDP and population, of different socioeconomic SSP 
development pathways are adopted in the selected prediction model. 
This study not only provides a comprehensive method for combining 
both climate change and socioeconomic conditions into prediction 
simulations but also considers the potential uncertainties to achieve 
higher accuracy and reliability of simulation results.  

3 Long-term predictions of electricity demand that are obtained by 
applying the GBDT model considering different future climatic 
change scenarios and socioeconomic uncertainties are demonstrated 
and recommended; these predictions can provide reliable and useful 
scientific-based evidence for developing energy saving plans, 

S. Liu et al.                                                                                                                                                                                                                                       



Sustainable Cities and Society 70 (2021) 102936

16

managing urban carbon emissions, and mitigating climate change in 
the 21 st century. The case study in Hong Kong demonstrates that a 
future changing climate together with socioeconomic development 
can result in significant increases in monthly electricity demand. This 
demand is expected to increase by up to 89.40 % for the residential 
sector and by 54.34 % for the commercial sector in the 2090s 
compared with 2018 levels. Practically, the study provides an 
important reference for local policymakers but also provides a useful 
demonstration example for future energy predictions for other sub-
tropical cities. 
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Appendix A  

Table A1 
List of CMIP5 general circulation models applied in this study (Liu, Kwok, Lau, Tong et al., 2020).  

Model 
Designation 

Modelling Group Group 
Acroynm 

Scenarios 

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization CSIRO RCP4.5, RCP8.5 
BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration BCC RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
BNU-ESM College of Global Change and Earth System Science, Beijing Normal University GCESS,BNU RCP4.5, RCP8.5, RCP2.6 
CanESM2 Canadian Centre for Climate Modelling and Analysis CCCma RCP4.5, RCP8.5, RCP2.6 
CNRM-CM5 Centre National de Recherches Météorologiques CNRM RCP4.5, RCP8.5, RCP2.6 
CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization CSIRO RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL RCP4.5, RCP8.5, RCP6.0 
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL RCP4.5, RCP8.5, RCP6.0 
HadGEM2-CC Met Office Hadley Centre MOHC RCP4.5, RCP8.5 
INM-CM4 Institute for Numerical Mathematics INM RCP4.5, RCP8.5 
IPSL-CM5A-LR Institut Pierre-Simon Laplace IPSL RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
IPSL-CM5A-MR Institut Pierre-Simon Laplace IPSL RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
IPSL-CM5B-LR Institut Pierre-Simon Laplace IPSL RCP4.5, RCP8.5 
MIROC5 Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, The 

University of Tokyo 
MIROC RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, The 

University of Tokyo 
MIROC RCP4.5, RCP8.5 

MIROC-ESM- 
CHEM 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, The 
University of Tokyo 

MIROC RCP4.5, RCP8.5, RCP2.6, 
RCP6.0 

MPI-ESM-LR Max-Planck-Institut für Meteorologie MPI RCP4.5, RCP8.5, RCP2.6 
MRI-CGCM Meteorological Research Institute MRI RCP4.5, RCP8.5, RCP6.0 
Nor-ESM1-M Norwegian Climate Centre NCC RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
MPI-ESM-MR Max-Planck-Institut für Meteorologie MPI RCP4.5, RCP8.5, RCP2.6 
ACCESS1-3 Commonwealth Scientific and Industrial Research Organization CSIRO RCP4.5, RCP8.5 
BCC-CSM1-1-m Beijing Climate Center, China Meteorological Administration BCC RCP4.5, RCP8.5, RCP2.6, 

RCP6.0 
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC RCP4.5, RCP8.5 
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC RCP4.5, RCP8.5  

Table A2 
The ensemble mean, 5th percentile, and 95th percentile of temperature anomaly in each decade under the different RCP scenarios.  

Period 
RCP4.5 RCP8.5 

5th percentile The ensemble mean 95th percentile 5th percentile The ensemble mean 95th percentile 

2000− 2009 0 0.29 0.69 0 0.42 0.70 
2010− 2019 0.30 0.53 0.87 0.30 0.58 0.90 
2020− 2029 0.50 0.79 1.00 0.60 0.91 1.20 
2030− 2039 0.53 1.10 1.57 0.80 1.17 1.50 
2040− 2049 0.92 1.36 1.79 0.92 1.58 2.07 
2050− 2059 1.10 1.62 2.10 1.50 2.11 2.60 
2060− 2069 1.12 1.82 2.40 1.80 2.57 3.09 
2070− 2079 1.30 1.99 2.60 2.03 3.03 3.86 
2080− 2089 1.42 2.06 2.69 2.52 3.51 4.37 
2090− 2099 1.23 2.06 2.79 2.80 4.03 5.07  
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(2013). The challenge to keep global warming below 2C. Nature Climate Change, 3, 
4–6. https://doi.org/10.1038/nclimate1783 

Pilli-Sihvola, K., Aatola, P., Ollikainen, M., & Tuomenvirta, H. (2010). Climate change 
and electricity consumption-Witnessing increasing or decreasing use and costs? 
Energy Policy, 38, 2409–2419. https://doi.org/10.1016/j.enpol.2009.12.033 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., et al. 
(2017). The shared Socioeconomic Pathways and their energy, land use, and 
greenhouse gas emissions implications: An overview. Global Environmental Change, 
42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 

Robinson, C., Dilkina, B., Hubbs, J., Zhang, W., Guhathakurta, S., Brown, M. A., et al. 
(2017). Machine learning approaches for estimating commercial building energy 
consumption. Applied Energy, 208, 889–904. https://doi.org/10.1016/j. 
apenergy.2017.09.060 

Sangrody, H., Zhou, N., & Tutun, S. (2018). Long term forecasting using machine 
learning methods. 2018 IEEE Power and Energy Conference at Illinois. https://doi.org/ 
10.1109/PECI.2018.8334980 

Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban 
heat island - A review of the actual developments. Renewable and Sustainable Energy 
Reviews, 26, 224–240. https://doi.org/10.1016/j.rser.2013.05.047 

Santamouris, M. (2016). Cooling the buildings-past, present and future. Energy and 
Buildings, 128, 617–638. https://doi.org/10.1016/j.enbuild.2016.07.034 

Seyedzadeh, S., Pour Rahimian, F., Rastogi, P., & Glesk, I. (2019). Tuning machine 
learning models for prediction of building energy loads. Sustainable Cities and Society, 
47, Article 101484. https://doi.org/10.1016/j.scs.2019.101484 

Shao, M., Wang, X., Bu, Z., Chen, X., & Wang, Y. (2020). Prediction of energy 
consumption in hotel buildings via support vector machines. Sustainable Cities and 
Society, 57, Article 102128. https://doi.org/10.1016/j.scs.2020.102128 

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the 
experiment design. Bulletin of the American Meteorological Society, 93, 485–498. 
https://doi.org/10.1175/BAMS-D-11-00094.1 

Toktarova, A., Gruber, L., Hlusiak, M., Bogdanov, D., & Breyer, C. (2019). Long term load 
projection in high resolution for all countries globally. International Journal of 
Electrical Power & Energy Systems, 111, 160–181. https://doi.org/10.1016/j. 
ijepes.2019.03.055 

Tong, H. W., Wong, C. P., & Lee, S. M. (2017). Projection of wet-bulb temperature for 
Hong Kong in the 21st century using CMIP5 data. In The 31st Guangdong - Hong Kong 
- Macao Seminar on Meteorological Science and Technology and The 22nd Guangdong - 
Hong Kong - Macao Meeting on Cooperation in Meteorological Operations. 

Torrini, F. C., Souza, R. C., Cyrino Oliveira, F. L., & Moreira Pessanha, J. F. (2016). Long 
term electricity consumption forecast in Brazil: A fuzzy logic approach. Socio- 
economic Planning Sciences, 54, 18–27. https://doi.org/10.1016/j.seps.2015.12.002 

Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient boosting machine for 
modeling the energy consumption of commercial buildings. Energy and Buildings. 
https://doi.org/10.1016/j.enbuild.2017.11.039 

Trotter, I. M., Bolkesjø, T. F., Féres, J. G., & Hollanda, L. (2016). Climate change and 
electricity demand in Brazil: A stochastic approach. Energy, 102, 596–604. https:// 
doi.org/10.1016/j.energy.2016.02.120 

Troup, L., Eckelman, M. J., & Fannon, D. (2019). Simulating future energy consumption 
in office buildings using an ensemble of morphed climate data. Applied Energy, 255, 
Article 113821. https://doi.org/10.1016/j.apenergy.2019.113821 

Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). A variance inflation factor and 
backward elimination based robust regression model for forecasting monthly 
electricity demand using climatic variables. Applied Energy, 140, 385–394. https:// 
doi.org/10.1016/j.apenergy.2014.12.011 

Wan, K. S. Y., & Yik, F. W. H. (2004). Building design and energy end-use characteristics 
of high-rise residential buildings in Hong Kong. Applied Energy, 78, 19–36. https:// 
doi.org/10.1016/S0306-2619(03)00103-X 

Wan, K. K. W., Li, D. H. W., & Lam, J. C. (2011). Assessment of climate change impact on 
building energy use and mitigation measures in subtropical climates. Energy, 36, 
1404–1414. https://doi.org/10.1016/j.energy.2011.01.033 

Wan, K. K. W., Li, D. H. W., Liu, D., & Lam, J. C. (2011). Future trends of building heating 
and cooling loads and energy consumption in different climates. Building and 
Environment, 46, 223–234. https://doi.org/10.1016/j.buildenv.2010.07.016 

Xia, C., Wang, J., & McMenemy, K. (2010). Short, medium and long term load forecasting 
model and virtual load forecaster based on radial basis function neural networks. Int 
J Electr Power Energy Syst, 32, 743–750. https://doi.org/10.1016/j. 
ijepes.2010.01.009 

Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy 
consumption implications - A review. Applied Energy, 115, 164–173. https://doi.org/ 
10.1016/j.apenergy.2013.10.062 

Yang, Y., Li, S., Li, W., & Qu, M. (2018). Power load probability density forecasting using 
Gaussian process quantile regression. Applied Energy, 213, 499–509. https://doi.org/ 
10.1016/j.apenergy.2017.11.035 

You, Q., Fraedrich, K., Sielmann, F., Min, J., Kang, S., Ji, Z., et al. (2014). Present and 
projected degree days in China from observation, reanalysis and simulations. Climate 
Dynamics, 43, 1449–1462. https://doi.org/10.1007/s00382-013-1960-0 

Yu, Z., Haghighat, F., Fung, B. C. M., & Yoshino, H. (2010). A decision tree method for 
building energy demand modeling. Energy and Buildings, 42, 1637–1646. https://doi. 
org/10.1016/j.enbuild.2010.04.006 

Yu, S., Wei, Y. M., & Wang, K. (2012). A PSO-GA optimal model to estimate primary 
energy demand of China. Energy Policy, 42, 329–340. https://doi.org/10.1016/j. 
enpol.2011.11.090 

Zhai, Z. J., & Helman, J. M. (2019). Implications of climate changes to building energy 
and design. Sustainable Cities and Society, 44, 511–519. https://doi.org/10.1016/j. 
scs.2018.10.043 

Zheng, S., Huang, G., Zhou, X., & Zhu, X. (2020). Climate-change impacts on electricity 
demands at a metropolitan scale: A case study of Guangzhou, China. Applied Energy, 
261, Article 114295. https://doi.org/10.1016/j.apenergy.2019.114295 

Zhu, M., Pan, Y., Huang, Z., & Xu, P. (2016). An alternative method to predict future 
weather data for building energy demand simulation under global climate change. 
Energy and Buildings, 113, 74–86. https://doi.org/10.1016/j.enbuild.2015.12.020 

Zhong, H., Wang, J., Jia, H., Mu, Y., & Lv, S. (2019). Vector field-based support vector 
regression for building energy consumption prediction. Applied Energy, 242, 
403–414. https://doi.org/10.1016/j.apenergy.2019.03.078 

S. Liu et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0255
http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0255
http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0255
https://doi.org/10.1016/j.energy.2018.05.192
https://doi.org/10.1016/j.energy.2012.03.044
https://doi.org/10.3390/en9110941
https://doi.org/10.1016/j.jup.2019.04.001
https://doi.org/10.1016/j.enbuild.2019.109696
https://doi.org/10.1016/j.enbuild.2020.110469
https://doi.org/10.1016/j.enbuild.2020.110469
https://doi.org/10.1016/j.enpol.2003.11.008
https://doi.org/10.1016/j.enpol.2003.11.008
https://doi.org/10.1016/j.buildenv.2014.06.019
https://doi.org/10.1016/j.scs.2020.102283
https://doi.org/10.1016/j.scs.2020.102283
https://doi.org/10.1016/j.apenergy.2016.08.096
https://doi.org/10.1016/j.apenergy.2020.114568
https://doi.org/10.1016/j.apenergy.2019.01.085
https://doi.org/10.1038/nature12540
https://doi.org/10.1016/j.renene.2019.04.077
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1016/j.energy.2015.11.055
https://doi.org/10.1038/nclimate1783
https://doi.org/10.1016/j.enpol.2009.12.033
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.apenergy.2017.09.060
https://doi.org/10.1016/j.apenergy.2017.09.060
https://doi.org/10.1109/PECI.2018.8334980
https://doi.org/10.1109/PECI.2018.8334980
https://doi.org/10.1016/j.rser.2013.05.047
https://doi.org/10.1016/j.enbuild.2016.07.034
https://doi.org/10.1016/j.scs.2019.101484
https://doi.org/10.1016/j.scs.2020.102128
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1016/j.ijepes.2019.03.055
https://doi.org/10.1016/j.ijepes.2019.03.055
http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0395
http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0395
http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0395
http://refhub.elsevier.com/S2210-6707(21)00222-5/sbref0395
https://doi.org/10.1016/j.seps.2015.12.002
https://doi.org/10.1016/j.enbuild.2017.11.039
https://doi.org/10.1016/j.energy.2016.02.120
https://doi.org/10.1016/j.energy.2016.02.120
https://doi.org/10.1016/j.apenergy.2019.113821
https://doi.org/10.1016/j.apenergy.2014.12.011
https://doi.org/10.1016/j.apenergy.2014.12.011
https://doi.org/10.1016/S0306-2619(03)00103-X
https://doi.org/10.1016/S0306-2619(03)00103-X
https://doi.org/10.1016/j.energy.2011.01.033
https://doi.org/10.1016/j.buildenv.2010.07.016
https://doi.org/10.1016/j.ijepes.2010.01.009
https://doi.org/10.1016/j.ijepes.2010.01.009
https://doi.org/10.1016/j.apenergy.2013.10.062
https://doi.org/10.1016/j.apenergy.2013.10.062
https://doi.org/10.1016/j.apenergy.2017.11.035
https://doi.org/10.1016/j.apenergy.2017.11.035
https://doi.org/10.1007/s00382-013-1960-0
https://doi.org/10.1016/j.enbuild.2010.04.006
https://doi.org/10.1016/j.enbuild.2010.04.006
https://doi.org/10.1016/j.enpol.2011.11.090
https://doi.org/10.1016/j.enpol.2011.11.090
https://doi.org/10.1016/j.scs.2018.10.043
https://doi.org/10.1016/j.scs.2018.10.043
https://doi.org/10.1016/j.apenergy.2019.114295
https://doi.org/10.1016/j.enbuild.2015.12.020
https://doi.org/10.1016/j.apenergy.2019.03.078

	Predicting long-term monthly electricity demand under future climatic and socioeconomic changes using data-driven methods:  ...
	1 Introduction
	1.1 Background
	1.2 Literature review
	1.3 Research gaps and contributions

	2 Material and methods
	2.1 Data preparation
	2.1.1 Historical and future meteorological data
	2.1.2 Socioeconomic variables

	2.2 Data-driven methods
	2.2.1 Support vector machine
	2.2.2 Decision tree
	2.2.3 Artificial neural network
	2.2.4 Gradient boosting decision tree
	2.2.5 Gaussian process regression
	2.2.6 Multiple linear regression

	2.3 Model validation and error calculation

	3 Results
	3.1 Correlation results of independent variables and electricity consumption
	3.2 Comparisons of model performance
	3.3 Predictions of future electricity demand under different climate change and socioeconomic scenarios

	4 Discussion
	4.1 Performance of data-driven methods
	4.2 Climatic and socioeconomic impacts and policy implications
	4.3 Limitations and future work

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A
	References


